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1 Markov models

We can model nucleotide transitions using a Markov Chain. We will define the transition matrix of transition proba-
bilities at the time ¢:
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Additionally, from the Markov property:
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Here we transition from a to ¢ at time ¢1, and from c to b at time t. We will also note that
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So given € > 0, for all ¢, we may compute n such that t = ne:
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For every time ¢, we can compute the transition matrix P [t], which is to say, the probability that some letter will
transition to another letter. All that is left to do is evaluate the matrix. This leaves us with 3 problems:

1. How?
2. Exponentiating matrices is expensive
3. We have found a solution for N, not R

Firstly, recall how to differentiate from infi:
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Which is to say, we have got a simple differential equation:
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Where R is a rate matrix.
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Which looks remarkably like how one differentiates the exponential:

f(0)=1 (10)
f'(@)=af (z) (11)
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Where f is e*®. So, if we can compute R = 5 then we can compute P[a — b] at any time ¢.

We will note that this computation is P [t] = e!ff. What does it mean to raise e to the power of a matrix? Well,

3bluelbrown did a great video| about this. Essentially, if we do Taylor series: eX = Z — Then we resolve the
n!
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issue, since in our case it is simply that X = (tR).
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So, R = %ir% % Therefore, teh first approximation is R ~ I +hR. This gives us a first approximation where
—
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1.1 Jukes Cantor

In 1969, Jukes and Cantor created a simple approximation symmetric matrix:
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and the transition matrices:
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1.2 Kimura

In 1980, Kimura created something similar, but with differentiation between purines (4 < G) and pyrimidine (C' < T)).
We will note that transitions a > transversions f.
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So the transition matrix at time ¢:
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So, given a rate matrix, we may compute the probability of transition between every letter, for every possible time
t. This is in other words, a simple model for evolution of sequences.


https://www.youtube.com/watch?v=O85OWBJ2ayo
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